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We show how certain properties of the Anderson model on a tree are related to 
the solutions of a nonlinear integral equation. Whether the wave function is 
extended or localized, for example, corresponds to whether or not the equation 
has a complex solution. We show how the equation can be solved in a weak- 
disorder expansion. We find that, for small disorder strength 2, there is an 
energy E,.(2) above which the density of states and the conducting properties 
vanish to all orders in perturbation theory. We compute perturbatively the 
position of the line E~(2) which begins, in the limit of zero disorder, at the band 
edge of the pure system. Inside the band of the pure system the density of states 
and conducting properties can be computed perturbatively. This expansion 
breaks down near E~(2) because of small denominators. We show how it can be 
resummed by choosing the appropriate scaling of the energy. For energies 
greater than E,.(21 we show that nonperturbative effects contribute to the 
density of states but we have been unable to tell whether they also contribute 
to the conducting properties. 
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1. INTRODUCTION 

A n d e r s o n  loca l i za t ion ,  ~1 o r  the  s t u d y  of  t r a n s p o r t  p r o p e r t i e s  of  a q u a n t u m  

par t ic le  in  a r a n d o m  p o t e n t i a l ,  is one  of  the  m o s t  i m p o r t a n t  p r o b l e m s  in 

the  t h e o r y  of  d i s o r d e r e d  sys tems.  12'3~ In  one  a n d  two  d i m e n s i o n s  a n  

a r b i t r a r i l y  sma l l  r a n d o m  p o t e n t i a l  suffices to  local ize  all e n e r g y  e igens ta tes .  

In t h r ee  a n d  h i g h e r  d i m e n s i o n s  b o t h  loca l i zed  a n d  e x t e n d e d  s ta tes  c an  

exist :  s t r o n g  d i s o r d e r  or  ene rg ies  far  f rom the  b a n d  c e n t e r  give rise to  

loca l ized  s ta tes ,  w h e r e a s  weak  d i s o r d e r  a n d  energ ies  close to the  b a n d  
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center produce extended states. Extended and localized states are separated 
by a line in the energy-strength of disorder plane, the mobility edge. The 
location of the mobility edge is a question of fundamental interestJ 41 

As usual in statistical mechanics, the simplest cases one can consider 
are mean-field models. The most extensively studied mean-field model of 
localization is the Anderson model on a tree. t5 l~ Various approaches have 
been developed, based in particular on self-energy calculations 14-51 o r  
on supersymmetry 18'9'131 which reduce the problem to a nonlinear integral 
equation. 1~-9~ This integral equation, however, is complicated and the posi- 
tion of the mobility edge cannot be determined without recourse to some 
kind of approximation. Several works tried to overcome this difficulty by 
considering simplified versions of the model on a tree. c14"15~ 

In the present paper, we reconsider the Anderson problem on a tree. 
We first give a derivation of the integral equation to be solved which is, 
although completely equivalent to, more intuitive, we think, than previous 
derivations. The system insulates or conducts depending on whether the 
integral equation possesses real or complex solutions. We try to solve this 
equation in the limit of weak disorder using a method ~6~ which generalizes 
previous weak-disorder calculations in one dimensionJ~7~ 

One interesting outcome of this approach is the existence of a line 
E,.(2) in the E, 2 plane (E is the energy and 2 measures the strength of 
disorder) beyond which the integrated density of states and the conducting 
properties vanish to all orders in perturbation theory. This line tends to the 
band edge of the pure system, E = 2  x / ~  (where K +  1 is the coordination 
number of the tree) in the limit of zero disorder. We can show that for 
energies greater than E,.(2), nonperturbative contributions to the density of 
states make it nonzero. We have not, however, been able to determine 
whether nonperturbative effects also contribute to the conducting proper- 
ties. The question is of particular interest because Abou-Chacra and 
Thouless ~6~ predict that the mobility edge tends to E =  K +  1 rather than to 
the band edge, E = 2 x//-K, in the limit of zero disorder. 

The paper is organized as follows: In Section 2, we derive the nonlinear 
integral equation satisfied by the distribution P(R) of a Riccatti variable R, 
defined to be the ratio of the wave function at adjacent sites on the lattice. 
We show how the solution of this nonlinear integral equation gives the 
integrated density of states and why the existence of a complex solution is 
related to the existence of extended states. In Section 3, we discuss the pure 
system, i.e., the problem in absence of disorder. In Section 4, we show how 
a weak-disorder expansion can be performed for energies inside the band 
of the pure system. We find that in the presence of weak disorder the 
system conducts. In Section 5, we extend the weak-disorder expansion to 
the neighborhood of the band edge. We obtain within this perturbative 
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approach an expression for the mobility edge Ec(2) in powers of the 
strength 2 of the disorder. For E >  Ec(2), the integrated density of states 
vanishes to all orders in 2, although it is known that for distributions of the 
potential with unbounded support, it never vanishes. "g-z~ In Section 6, we 
discuss the origin of nonperturbative effects for energies outside the band 
of the pure system. Lastly, in Section 7, we describe a numerical method to 
obtain the mobility edge, and we compare the results of this approach with 
the prediction of Section 5 and with an exactly soluble case where the 
Ricatti variables are independent. 

2. F O R M U L A T I O N  OF  T H E  P R O B L E M  

We consider a tight-binding model on a Cayley tree of N sites (see 
Fig. 1) with a random potential Vt at each site i of the lattice. The poten- 
tials V~ are independent random variables governed by a probability 
distribution p(V) which we choose to have zero mean ( ( V ~ ) = 0 ) .  The 
Schr6dinger equation reads 

K + I  

T. V,j=EO,-~V,V,, (I) 
j=1 

Here I//i is the value of the wavefunction at site i, 2 is a parameter that 
controls the strength of the random potential, E is the energy of the 
particle, and the sum is over the K +  1 neighbors of the site i. It is useful 
to rewrite (1) as a recursion relation/16~ Call the central site of the tree io 

b 

t I R~176 R"-b- R--~ 

Fig. 1. A Cayley tree with K =  2 and depth n = 4 .  
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and define a Ricatti variable R~ on a site i by R~= qJj/~O~, where j is the 
neighbor of site i closer to io on the tree. Dividing (1) through by I//i and 
regrouping terms gives (Fig. 1) 

K 1 
R , = E - 2 V ~ -  2 R'--jj (2) 

j = l  

for all sites except io. This recursion allows one to calculate the Ri 
associated to all sites of the tree except for the site io (where it is not 
defined) and except for the sites adjacent to the boundary, where the R i 

depend on the boundary conditions and, as we will see later, should be 
chosen differently depending on the properties we want to study (density of 
states or conducting properties). 

On account of the random potential in (2), the R~ are random 
variables governed by a probability distribution. The recursion (2) com- 
pletely determines the probability distribution P,,,(R~) of an R~ located m 
steps from the boundary of the tree once the probability distribution P~(R~) 
of the R~ on sites adjacent to the boundary have been specified. In what 
follows we will always choose boundary conditions in such a way that the 
R~ on sites adjacent to the boundary are identically distributed with dis- 
tribution Pj(R). The symmetry of the tree then ensures that all the R~ an 
equal number m of steps from the boundary are also identically distributed 
with a probability distribution Pm(Ri) that depends on the number m one 
has to iterate (2). The recursion (2) induces the following recursion on the 
distributions P,,,( R ): 

( ') 
j=i j = l  

(3) 

We shall assume in what follows that, for all the boundary conditions we 
consider [P~(R) concentrated on the real axis when we calculate the 
density of states, or P~(R) concentrated on the lower half complex plane 
with all Ri having a negative imaginary part when we study the conduction 
properties], the recursion (3) converges to a limiting distribution P(R) 
which satisfies 

(4) 

Up to a change of variables, this integral equation is equivalent to the 
integral equations obtained in refs. 5-9. A similar equation also exists for 
diluted lattices. I-'l z3~ The particular limiting distribution to which (3) 
converges might depend on the initial P~(R). We will see below that the 
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localized and the extended regimes correspond to one of the two following 
situations: 

In the localized region: There is only one fixed distribution, Pre~(R), 
which solves (4). This distribution is concentrated on the real axis and 
is stable, i.e., it is the limit of the sequence P,,(R) obtained through the 
recursion (3) for any initial distribution P~(R) [all initial distributions 
concentrated on the real axis as well as those concentrated initially in the 
complex plane converge to this distribution Prea~(R), so that even if the R 
have initially some imaginary part, they become real under the iteration 
of(Z)].  

In the extended region: There exist two different fixed distributions, 
Preal(R) and Pcomp~e~(R), which solve (4). The real distribution Pr~at(R), 
concentrated on the real axis, is the limit of the sequence P,,(R) when the 
initial distribution PL(R) is concentrated on the real axis. This distribution 
Pr,~(R) is, however, unstable against imaginary perturbations: a small 
imaginary component in the R~ on the boundary will not vanish under 
iteration of (2). Instead, if, as for the scattering situation described below, 
the initial distribution P~(R) is concentrated in the lower half complex 
plane (so that the initial R all have a negative imaginary part), P,,(R) 
converges to a different distribution Pcomplex(R) concentrated in the lower 
half-plane. [Note that there exists also a third distribution in the upper 
half-plane symmetric to Pcomr,~x(R), but we will not consider it because 
with the boundary conditions we use, all the R i a r e  always either real or 
complex with negative imaginary parts.] 

The two fixed distributions P ~ ( R )  and P~o~p~(R) are both solutions 
of the fixed-point equation (45) and a great deal of what follows is devoted 
to the study of these fixed distributions. 

For choices of E, 2, and p(V) such that (4) has both a real and a 
complex fixed distribution (the extended phase), P~,,I(R) and P~omp~ex(R) 
are not independent. In the appendix we show that the real fixed distribu- 
tion Pr~,~(R) solution of (4) is given in terms of P~omp~x(R) by 

l f ~  I o  s P~o~pl~(r- is) P~"I(R) = -n _~ dr ds (R - r) 2 + s ~ 

= -- 1 Im & ds 1 P~o~pl,~(r - is) (5) 
x R - r + i s  

We now address the question ofr the choice of the initial distribution Pt(R) 
and discuss how the fixed distributions Preal(R) and Pcomp~ex(R) are related 
to the density of states and to the conducting properties. 
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2.1. The Dens i ty  of  S ta tes  

Let us first discuss how the density of states can be obtained for the 
tree geometry ~ (see Fig. 1 ). We want to calculate the eigenvalues with the 
boundary condition that the wavefunction vanishes on the boundary of 
the tree. With this boundary condition, the Schr6dinger equation for a site 
i adjacent to the boundary reads 

~pj= E ~ -  2V~r (6) 

where j is the only neighbor of site i on the tree. Dividing through by ~,~ 
then gives 

R~=E-2V~ (7) 

where Ri = Lpj/~. The initial R are real, so they remain real under iteration 
of (2) and the invariant measure P(R) is concentrated on the real axis. 

As discussed in, c~6~ Eqs. (2) and (7) solve the Schr6dinger equation 
everywhere on the tree except on the central site i o. In terms of the Ri, the 
Schr6dinger equation for the central site io reads 

K+1 1 
e- V,o- Y 7=0 (8) 

j = l  

where the sum runs over the 
functions of E and the values 
eigenenergies. 

K +  1 neighbors j of site io. All the R~ are 
E~ of the energy which satisfy (8) are the 

Expression (8) contains all the information on the density of states but 
is not easy to use. If, however, one multiplies (8) by the product of all the 
R~ in the lattice, 1~6~ it becomes a polynomial in E of degree N, where N is 
the number of lattice sites and the coefficient of highest degree is 1 [for a 
tree of depth n, the number of sites is N=(K"+K"-I-2) / (K-1)] .  
Therefore, one can write 

( E - E = ) =  E-,~Vio- ~ H R, (9) 
. =  ~ t = l  j 1 i~io 

Both sides of this equation are polynomials in E with real coefficients and 
real roots. To extract the density of states, one can take the logarithm of 
this equality, for any complex value of the energy E, with the convention 
that the branch cut runs along the real axis from - ~  to the largest eigen- 
value E~. When the energy approaches the real axis at a certain value E 
from above, the imaginary part of the left-hand side is just rt times the 
number of eigenenergies larger than E, whereas the imaginary part of the 
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right-hand side is equal to 7t times the number of negative R~ [ + 1 when 
the term E - 2 V ; 0 - ~ j  (I/R/) is negative]. This is because all the Ri as well 
as the term E-2Vio-]F_.j(1/Rj) have positive imaginary parts when the 
energy E is in the upper complex plane [see (2) and (7)]. Therefore the 
number /2,,(E) of eigenvalues greater than E (the integrated density of 
states) is given by 

/ t  K + I  1 \ 
12.(E)=O~ 2V~o+jE -~-E)+~,oE O(-Ri)  (10) 

Since the number of negative Ri is equal to the number of nodes of the 
wave function, we see that the equality (10) between the integrated density 
of states and the number of nodes of the wave function, well known in one 
dimension, remains valid for tree structures, as was already discovered by 
Dhar and Ramaswamy c24~ in a similar calculation of the eigenmodes of 
Eden tree. 

For a tree of depth n [with N = ( K  " + I + K ' - 2 ) / ( K - 1 )  sites], the 
average over disorder of I2,,(E) is given by 

= _ _ P,,(R.i)dRjO 2V/0+ (/2, ,(E)) p(Vio )dVio f "" f  ~ s= 1 i=I --~/-E 

+ ( K + I )  ~ K ...... f~ Pm(R) aR (11) 

The expression can be simplified by using the recursion (3), 

; (1) 
<f2,,(E) > = P,,(R)dR P,,+,(R')dR' O - R '  

-- -oo  

i f ~ + ( K + I )  K . . . .  P m ( R )  d R ( 1 2 )  

m = 1 - o7: 

The tree geometry has the pathology that the number of sites near the 
boundary is proportional to the total number of sites in the tree. Surface 
effects are therefore strong. One can see this in (12), where PI(R) is multi- 
plied by the largest power of K. To eliminate these boundary effects and 
obtain an expression for the behavior of the bulk, one can use a subtrac- 
tion procedure. Letting F.  be an extensive quantity in a tree of depth n, 
the quantity (F. - KF._ ~)/2 is the value of F per site far from the bound- 
ary when n is large. "6~ To see this, note that the number of sites m steps 
from the boundary in a tree of depth n equals K times the number of sites 
m steps from the boundary in a tree of depth n -  1. The contributions to 



364 Miller and Derrida 

F from sites m steps from the boundary are thus canceled in the subtrac- 
tion. Under this subtraction, the number of sites we are left with is 

(K "+ ' + K" - 2 ) / ( K -  1 ) - K(K"+ K"-' - 2 ) / ( K -  I) = 2 

sites which are far from the boundary. Thus, dividing the difference 
F,,- KF,,_, by two gives the value of F per site far from the boundary. 
Applying this subtraction to (12) gives the average integrated density of 
states (~o(E)> per site far from the boundary in the limit n --* ~ ,  

<~(E)> = - - -  fo: f~ K- 1 P~.~(R) dR 
_o:2 .  - o ~ ,  

K + I  c o +--T- J_~ Proa,(R)dR 

P~ea,(R') dR' O (~- R') 

(13) 

For values of E and ;t such that there exists a complex fixed distribution 
Pco,,p,ex(R), one can use the relation (5) between Prea, and Pcomp,=x to 
express <og(E)> in terms of this complex distribution (see the appendix), 

(~176162 Pr176162176 R ' - I  ) r e  

K + I  } 
2 f Pcomplex(R) dRlog(R) (14) 

2.2. The Conduct ing  Propert ies 

We turn now to the relation between P(R) and the conducting proper- 
ties of the system. Imagine the situation shown in Fig. 2. Attach a wire to 
each boundary site of a branch of a tree as shown in Fig. 2. Suppose then 
that one sends a plane wave in at the left and allows it to scatter off 
the tree. For a branch of finite depth, some of the incoming wave will be 
reflected and some will propagate through the branch to the wires on the 
right. Of interest is what happens when the depth of the branch becomes 
large. There are two possibilities: either the wave is entirely reflected or 
some of the wave propagates through the tree into the wires on the right. 
In the former case, either there is a gap in the energy spectrum or the 
wavefunctions of the tree are localized; in the latter case the wavefunctions 
are extended. Now it is known that for a potential with unbounded support 
(e.g., a Gaussian) 1~8-2~ there are states at all energies. In this case, a reflec- 
tion amplitude of modulus 1 (complete reflection of the wave) implies that 
the states at that energy are localized. Therefore, to determine whether at 
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m--ml---- 

b - - - - - - . -  R.=E- kV a -  e ~ 

Rd= I + r  

Fig. 2. A branch of  a Cayley tree with wires attached to the boundaries to test the conduct- 
ing properties. In the scattering situation, a plane wave is sent in from the left and allowed 
to scatter off the tree�9 

a given value of E and ). the particle is localized, it suffices to compute  the 
reflection ampli tude in this experiment.  

To  relate the reflection ampli tude to the Ricatti variables, one needs to 
analyze what  happens at the boundary.  First consider the Schr6dinger 
equat ion for a site a adjacent to the right boundary,  

O. + O,.= EOo- xv,,O. (15) 

where b and c are the neighbors of a on the tree and in the wire, respec- 
tively (Fig. 2). In the wire the wavefunction is a plane wave ~k = eik" going 
to the right (corresponding to no incoming flux from right infinity) so that  
r  = eik. The Ricatti variable R.  = ~ 'h/~.  thus equals 

R . = E - 2 V . - e  ik (16) 

The wave vector k can be adjusted by putting a uniform potential  on the 
wire. We note that the R.  for all sites adjacent to the boundary  have 
a negative imaginary part  and it is easy to check that the iteration (2) 
preserves this property�9 

Starting with the boundary  R.  given by (16), we now iterate the recur- 
sion (2) up to the first R in the wire on the left side of the tree (Fig. 2). At 
this boundary  we have both an incoming and an outgoing wave, so that 
the wave function on the left wire has the form ~ = e"~" + re-ikx, where r is 
the reflection amplitude. The reflection ampli tude r is therefore related to 
the Ricatti variable Rd by 

~b e e-i~ + re~k 
(17) R a - o a  l + r  
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or equivalently, 

R a _ e  -ik 
r= Ra_ei ,  (18) 

It is clear that if R a is real, the numerator and the denominator are 
complex conjugates and so JrJ = 1. It is also easy to see that if Ra has a 
negative imaginary part, Ir[ < 1. Thus if the imaginary parts of the initial 
Ri iterate to zero, the particle is totally reflected and if they do not, the 
particle has a nonzero transmission coefficient. To find the mobility edge it 
therefore suffices to study the complex fixed distribution Pcornptex(R) and to 
determine at which values of E and 2 the probability of finding a nonzero 
imaginary part of R first vanishes. 

Remark. An idealized scattering situation like the one shown in 
Fig. 2 can be used in other cases, including finite-dimensional lattices, to 
decide whether a system is conducting or insulating. One could have, for 
example, an incoming wave on a wire attached to an internal site and 
outgoing waves at the boundary. A straightforward calculation but which 
would require new notations (that we will not present here) would show 
that a reflection amplitude smaller than 1 in the scattering situation is 
equivalent to the Green's function having a nonvanishing imaginary part 
when the energy E tends to the real axis (refs. 25 and 26 and references 
therein). 

For arbitrary 2, E, and p(V), one does not know how to find the fixed 
distributions that solve (4) and in the following sections we will show how 
certain quantities can be expanded in the limit of weak disorder (2 small). 
An exception is when the distribution of the potential is Cauchy ~5~ 

1 1 
p(V)=-~ V2+--- ~ (19) 

Using the fact that sums of Cauchy random variables are also Cauchy dis- 
tributed and that the inverse of a Cauchy variable is Cauchy, it is easy to 
obtain the exact form of Preat(R): 

1 b 
Pf~a,(R) = rt (R - a) 2 + b 2 (20) 

where the parameters a and b are the values of the attractive fixed point of 
the following two-dimensional map: 

an b,, 
a"+l =E-K--T--~;a~+b;, b,,+l =2+Ka;,+bn~ 2 
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Using (13), one then finds the following closed expression for the 
integrated density of states (co(E)): 

K + I  _,(b~ K - l t a n _ , ( ~ a 2 + b Z + ~ )  
( c o ( E ) ) = y t a n  \aJ 27r aZ +b 2-  (21) 

Unfortunately, no one has been able to obtain an exact expression for the 
complex fixed distribution, even in the case of a Cauchy-distributed poten- 
tial. So conduction properties such as the location of the mobility edge are 
not known exactly even for Cauchy disorder. 

3. T H E  P U R E  S Y S T E M  

Before proceeding to the weak-disorder expansions, let us consider the 
case of no disorder (2 =0). For zero disorder and for our choices of 
boundary conditions, all the R~ for the boundary sites are equal, and so the 
initial distribution P~(R) is a 6-function. In the absence of disorder, all 
the Pk(R) computed from P~(R) through the recursion (3) are also 
6-functions concentrated at some value Ak, 

P t (R)=6(R-A, )  (22) 

where the Ak satisfy the following recursion: 

K 
A t +  I = E - - -  (23) 

At 

This recursion for Ak has two fixed ~__qints which are real when IEI > 2 x//-K 
and complex conjugate when - 2  x / K <  E <  2 x/~. 

First, if 

E >  2 x//-K (24) 

the sequence At given by the recursion (23) always converges to the real 
fixed point A given by 

E+ (E 2 - 4K) 1/2 
A - (25) 

2 

This implies that in the scattering situation described in Section 2, the 
initial complex R,. becomes real under iteration, and hence the wave is 
completely reflected. Furthermore, the integrated density of states is zero 
for this range of energy. To see this, note that with the boundary condition 
(7) (i.e., R i=E) ,  appropriate for the calculation of the density of states, 
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A I > A 2 >  " "  > A n . . - > A ,  and so all the R are positive. Moreover, 
E - ( K +  1)/A,, is also positive. It then follows from expression (10) or (13) 
that the integrated density of states is zero for the range of energy (24), 
meaning that even for a finite tree, there is no eigenenergy greater than 
2 w/K and so the range of energy (24) is outside the band. The case 
E < - 2  x / ~  is obviously symmetric. 

On the other hand, if 

- 2  x / ~ <  E < 2 x//-K (26) 

there exists a complex fixed point of (23), 

E -  i ( 4 K -  E2) I/z 
A - (27) 

2 

meaning that there is a g-distribution concentrated at this point that 
solves (3). 

If one starts with a real A I as in (7) to compute the density of states, 
the sequence Ak does not converge. Letting the energy E =  2 x//-K cos 0, one 
finds 

. s i n ( n 0  + 0 )  
A,,= x//'K s--~-n(n0-) (28) 

The integrated density of states for a tree of depth n then follows from (11): 

f2"(E)= O ( sin n O -  K sin(nO + + 0) 

+ ( K + I )  ~ K . . . . .  o ( - s i n ( m O + O ) )  
,,, = l sin(m0) J 

(29) 

The spectrum consists of a finite number of eigenvalues (as it should for a 
finite system) with huge degeneracies which reflect the symmetries of the 
tree. 

If one starts with a complex At, the sequence (23) does not converge 
either. It is, however, easy to show that 

A k - -  N//  g e i~  - -  e - 2(k - l )iO " 4 1 - -  N// g e ' ~  (30)  

A k - x//-K e - io A t -- x// K e - ~~ 

From this explicit expression, we see that if At is complex, Ak remains 
complex, and so the system is conducting. 
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Remark. It is a property particular to the pure system that when the 
R~ at the boundary are all equal, the sequence A,, does not converge, and 
thus the sequence Pk(R) has no limit. As soon as one introduces disorder 
(2:/:0), there are limiting distributions Pr=a,(R) and Pcor, pir which 
satisfy the fixed point (4). These distributions, in the limit 2--.0, also 
satisfy the fixed-point equation (4). It is possible to find these limiting 
distributions. The complex distribution is a 6-function concentrated at A 
given by (27) and the real distribution is given by the relation (5) between 
P~ea,(R) and Pcomplex(R), 

= 1  ( 4 K -  E2) 1/2 
Prowl(R) R2 ER + K (31) 

It is interesting to notice that this fixed distribution (31) is the invariant 
measure of the map (23). Using this fixed distribution, one obtains the 
following expression for the integrated density of states co(E) per site far 
from the boundary: 

K + I  0 K - I  ( K + I  ) 
co(E) = ~ \ K -  1 - -  --2--~-- t a n  - ' t a n / 9  (32) 

4. W E A K - D I S O R D E R  E X P A N S I O N  I N S I D E  T H E  B A N D  

We turn now to the weak-disorder expansions. As the properties of the 
pure system are qualitatively different in the band and outside the band, 
the weak-disorder expansion requires rather different techniques in these 
two cases. We will see that the neighborhood of the band edge must also 
be treated separately. 

In this section, we explain the small-2 expansion for energies E inside 
the band of the pure system ( - 2 x / ~  < E < 2 x/~).  In this energy range, 
we saw that the complex fixed distribution solution of (3) is a f-function 
concentrated at the complex number A, 

E -  i (4K-  E2) 1:2 
A - (33) 

2 

To obtain the weak-disorder expansion we assume that for 2 small, the 
variables R which appear in the recursion (2) have small fluctuations 
around A (see Fig. 3 and Remark 1 at the end of this section), so that the 
distribution Pr remains concentrated around A. In accordance 



Fig. 3. A set of typical R obtained by the Monte Carlo version of the recursion (2) explained 
in Section 7 for N =  1000. Here K = 4 ,  E=2 .1 ,  and the complex fixed-point solution of 127), 
represented by a diamond, lies at A = 1.05 - 1.702i. The ellipse represents the set of points 
to which the initial R = 2 - i  would map in the absence of disorder. For small disorder, 
{a) 2 = 0.1, the R quickly move off the ellipse and concentrate themselves around the complex 
fixed point. As the disorder increases, (b)) .  = 1 and (c)).  = 5, the R spread out. Finally, for 
very large disorder, Id) 2 = 30, the R quickly become real, and the particle is localized. 
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FIGURE 3 (continued) 

822/75/3-4-2 
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with this -- (16) assumpuon, it is convenient to make the following change of 
variables: 

A (34) 
Ri - 1 + 2Bi + 22Ci + ... 

Here Bi, Ci .... are fluctuating quantities, the distributions of which are 
assumed to be independent of 2. Inserting (34) into (2) and equating terms 
order by order in 2, one finds that the fluctuating parts B~, C~ ..... of R i 
satisfy the following recursions: 

AB,=V+~j~= Bj; AC~-AB~=-~.j=,Cj (35) 

and so on. Using these equations, it is easy to compute the moments of the 
fluctuating variables Bi, C,. .... in terms of K, E, and the moments ( V p) of 
the random potential V, which we assume to be finite. For example, 

A')(V2) A4(V2) (36) 
( B ) = 0 ;  (B2) - "-~--~, , ( C ) - ( A 4  K)(A2 K) 

Using this weak-disorder expansion, one can then calculate perturbatively 
any quantity that can be expressed as a function of the Ri. For example the 
real fixed point can be obtained from (5), 

--1 { 1 V2 A3(A3-KR) } 
P~eaj(R) = Im + 2 z (  ) g ~- -A (R-A)3 (A2-K) (Aa-K)  +0()'3) 

(37) 

The integrated density of states can also be calculated using (14), which 
relates co(E) to the complex fixed point. Substituting the perturbative 
expansion (34) of R around the complex fixed point into (14), expanding 
in 2, and calculating the necessary moments, we find to order 24 

_1{ 
CO(E)= Im K l o g A -  i o g ( A 2 - 1 ) - 2 z ( V  2) 

A 3 A 4 

--23( V3 ) 3(A2 1)3 24(V4)4(A2_l)4 

+24(V2)2 A4(3K-A~'-2A4)(K+II4+O(25)} 
4(A 2 - K)(A 4 - K)(A z - I 

A 2 

2(A 2 - 1 )2 

(38) 

Higher-order terms in ), are straightforward to calculate but in practice the 
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algebra required to work out the necessary moments and correlations 
becomes rather involved. 

Conduction properties can be calculated in a similar way. A question 
of basic interest is whether the wave function is localized or extended. 
From the discussion of Section 2 we know that the wavefunction is 
extended if there exists a complex fixed distribution concentrated in the 
lower half-plane. One way of determining whether such a complex fixed 
distribution exists is to calculate the magnitude of the reflection amplitude 
and see whether it is less than (extended) or equal to (localized) 1. The 
existence of the complex fixed distribution can be determined more easily, 
however, by considering ( Im R) .  Since the complex fixed distribution is 
concentrated in the lower half-plane, a necessary and sufficient condition 
for it to exist is for ( Im R )  to be nonzero. Perturbatively we have 

( Im R )  = (Im{A(1 -2B-22C+22B 2 ...}) 

KA 3 
=Ira  A - 2 2 ( V  2> (A2 K)(A4 K) 

KA4(A 4 + K) } 
-'~,~.3< V3> (A2K)(A4K)(A6_K)+O(J .4)_  (39) 

Remark I. Equation (39) indicates that for energies E inside the band 
of the pure system, weak disorder leaves the eigenfunctions extended. This 
result, obtained for arbitrary K including K =  1, where the tree becomes 
one-dimensional, apparently contradicts the well-known fact that weak dis- 
order localizes all the eigenfunctions in one dimension/27~ The reason the 
above calculation does not apply when K =  1 is that the assumption that 
the iteration (3) converges for weak disorder to a fixed complex distribu- 
tion close to the fixed point A is not valid. This can be easily seen in the 
weak-disorder expansion. Assume that some Ri obtained after n iterations 
has the form Ri = A/(1 + 2BI"1 + -.-). Clearly one has 

Vi 1 K (,,- 11 (40) Bl"'=-h-+ E ej 
) = t  

This implies the following recursion for ([Br 

( B("q 2) ( V 2 )  4.(IB("-1112 > 
- - -  (41) 

K K 

where we have used the equality [AI = v/-K. We see from (41) that for K >  1 
the fluctuations (IB("q2) saturate as n increases, meaning that an initial 
distribution concentrated in the neighborhood of A remains concentrated 
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near A. On the other hand, for K =  1, the fluctuations grow linearly with 
n so that the recursion does not converge to a fixed distribution close to A. 

Remark 2. The case K =  1 (one dimension) is special in other respects. 
In the band, at energy E = 2  x//-Kcos 0, the fixed point A is A = x / ~ e  -~~ 
Hence for K =  1, there are a large number of values of 0 at which the weak- 
disorder expansion (38) contains small denominators. (~7'28 31) This is not 
the case for K >  1, where only the band edges (0 = 0 and 0 = n) seem to 
give rise to small denominators. 

5. NEAR THE B A N D  EDGE 

As E approaches the band edge of the pure system 2 x//-K from below 
at fixed 2, terms like ( A 2 - K )  -~ diverge, and the above perturbation 
theory breaks down. Perturbative information about the complex fixed 
point can, however, still be obtained by choosing the appropriate scaling 
of the energy with 2. Let 

E = x//](" (2 - a22 ) (42) 

where a is of order one. For these energies, A is given by 
x / ~  [ 1 -  i2 x / ~ +  0(22)]. Substituting this in the expansions (38)and (39). 
one finds 

2K(K+ 1) ( V2) a t/2 3(V2) 2 ) 
3~z(K- 1) 2 a3/2+ 3(2(K- 1) + 8 ( K -  1)2al/2 + . "  (43) (og(E)) =23 

and 

<Im R ) =  --2 V/-/~ (a'/2 + <V2) 
2 ( K -  1 ) a 1/2 + "" ") (44) 

From this we see that the leading term in a small-2 expansion with a 
fixed as 2-* 0 corresponds to resumming an infinite series in the original 
expansions (38) and (39). 

For the range of energies (42), let us make the following change of 
variable: 

Ri - i --- ~i (45) 

Substituting this expression in (2), we see that the ~b~ are of order 2. 
Expanding both sides of (2) yields 

2V 1 K 
~ i + ~  + ~  + . . . .  ~ a22 +21El= ~bj (46) 
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The moments of ~b can then be calculated by taking successive integer 
powers of this equation. To lowest order one obtains 

( ~ 2 > =  _a22; <~>2= _ 2 2 ( a + ( V 2 ) ' ~ ;  <~>3 = O(2S) (47) 
k K - l /  

and so forth. Just as in the last section, we can now calculate the average 
of functions with respect to the complex fixed point perturbatively. For 
example, one finds, using (14) for the integrated density of states, 

2K(K+ 1) ( <V2>'~ 3/2 <V 2 > 
<~(E)>=~ ~ 3n (K_  1)2 - a  +-~- i -1  ) --[- O(,~ 4) for a>-K_-- - -  ~ (48) 

and <co(E)>=0 to order 23 for a <  - < V 2 > / ( K  - 1). Both (47) and (48) 
agree with (38) and (39) when a becomes large, as it should, and (47) and 
(48) are expected to represent the resummed series of the most singular 
terms in the expansions (38) and (39). 

One might wonder how this result is modified by higher-order terms. 
If one decides to calculate the integrated density of states or any other 
quantity to a given order p in 2, one needs to calculate the first p moments 
~b to order 2 p. To do so, one takes the successive powers of (46) and one 
averages. This gives relationships between the first p moments of ~b. If one 
uses these relations to express all the moments in terms of the first moment 
<~b >, one ends up with a polynomial equation in ~b of degree p which has 
real coefficients depending on 2, a, and the moments of the potential V. As 
one varies a (i.e., the energy E), one finds that two complex roots of this 
polynomial become real at a certain critical value E,. which to fourth order 
in 2 reads 

E,. ,2 <V2> ,,/-k<V~> )4 x<v'> 
x / ~  = 2 + z  ~ - - ]  -+23  (K- I )  + (K- l )  3 

_ 24 (9K 2 - 1 4 K -  3)< V 2 >2 ~- 0(25) (49) 
4 ( K -  1 )4 

If one pushes this expansion to higher order in 2, one would find higher- 
order corrections to Eo but for E >  E,, <~> as well as the higher moments 
of ~ would be real, and this implies through (14) that co(E)= 0 for E >  E,  
to any order in L 

This result seems to contradict the well-known fact that the density of 
states never vanishes for distributions of the random potential with 
unbounded support (such as the Gaussian distribution)J '8 203 Our result 
can be reconciled with a nonzero density of states at all energies E only if 
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there are small nonperturbative contributions to the density of states above 
Ec which vanish to any order in 2. We discuss this point in the next section. 

If perturbation theory could be trusted, it would follow from the 
discussion of Section 2 that the particle is localized for energies above E c 
since (~b) is real. The perturbative calculation therefore predicts a mobility 
edge at E,. given by (49). This result could be modified by nonperturbative 
effects; unfortunately, unlike the case for the density of states, we have not 
been able to discover what these effects might be or how to calculate them. 

6. B E Y O N D  T H E  B A N D  E D G E  

In this section we consider energies larger than 2 x / ~  and outside the 
scaling regime discussed in the last section. In this range of energy, the R,. 
converge to the real fixed point A given by (25) when 2 =0 .  For small 2, 
one expects the Ri to fluctuate about A. Expression (13) for the density of 
states requires, however, the knowledge of Pfe,,~(R) for values of R far from 
A. This is a large-deviation problem since untypical values of R are 
produced by untypical values of the potential. We are going to show that 
the real fixed distribution Pr~t(R) can be calculated by a saddle point 
method. We have also tried to calculate the complex fixed distribution in 
this range of energies by a similar approach but failed and we are unable 
to tell whether the fixed complex distribution simply does not exist or 
whether we have just not been able to find it. 

Since the regions of R which contribute to the density of states 
correspond to untypical values of R, the shape of Pr~at(R) in these regions 
depends strongly on the shape of p(V). In what follows, we will take p(V) 
to be Gaussian, 

(2~) m exp - (50) 

The equation to be solved for Prea~(R) is then 

~ e x p  dRiP(Ri)6 R-E+AV+ ~ Rii (51) 
i = 1  i = 1  

Now suppose that 2 is small and that R has fluctuations of order 2 around 
A. If we write R = A + 2~b, we get from (2) 

,52, 
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Since V is Gaussian distributed, it follows that ~b is also Gaussian with zero 
mean and (~b 2) = ( V  :) / (1 -K/A4) .  In terms of the variable R, 

1 (R-A) 2 
P(R)- (21r22(~2))l/zexp 222(~b2) (53) 

valid for R - A of order 2. Given this expression for P(R) valid for small 
fluctuations away from A, it is natural to look for the solution of (51) of 
the form 

P(R)=Q(R)exp(~,_ )) (54) 

where F(R) is independent of 2. Plugging this into (51) and integrating 
over V gives a saddle point equation for F(R), 

1 
F ( R )=  max . -  R-E+ Y" + ~ F(R,) (55) 

R,.R2....R~ t 2 .  ,=,  R,, ,=, 

The saddle point is given by the Ri that solve 

1 (R-E+Y~ 1 ) F'(R,) = -~-'~2 ~ - -  (56) 
K d  

Finding the solution F(R) of (55)-(56) is nontrivial. If, however, the saddle 
point is symmetric, R~ = R2 . . . . .  Rx, the function F(R) satisfies 

g 2 

F(R)=max{-I(E-R---~I ) +KF(RI)} (57) 

Even under this assumption, we could not find a closed expression for F(R) 
in terms of elementary functions. One can, however, show that a solution 
of (57) is given by 

F(R)= lim G,,(R) (58) 
n ~ o o  

where the G,,(R) are defined by 

G.(R) = max - 
Xi, X2,..., Xn 

g 2 

(59) 

with Xo = R and X, + t = A. 
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It is easy to show that (58) and (59) solve (57). First, it is clear that 
G,,(R) <~ 0 for all n and R. Second, it is easy to check that G,,(R) increases 
with n. This can be seen by choosing the same set X~, X2 ..... X. for Gn and 
G,, § ~ with X,, +, = X. + 2 = A. Since the G. increase and are all negative, the 
limit (58) which defines F(R)  exists. That F(R)  satisfies (57) then follows 
from the observation that 

R K 2 
G.+l(R)=maxR, - -~ E -  + KG,,(R1) (60) 

We tried to check the assumption that the saddle point equation (55) 
has a symmetric saddle point by solving this equation numerically for 
K =  2 and E =  3. The values of R~ and R2 which give the saddle point are 
shown in Fig. 4 and the numerical solution for F(R)  is shown in Fig. 5. We 
see that the saddle point is symmetric for a range of values of R around A. 
Outside this range, however, the saddle point is no longer symmetric and 
F(R)  seems to be constant. The rather complicated shape of F(R)  makes 
the calculation of the integrated density of states difficult, in particular 
because it is hard to tell if the two terms which appear in the expression 
(13) of (og(E)) are of the same order when 2 is small, and because if the 

2 R1 

1 

0 -  

- 2  , , , , I , , , , i , , , , I , , , , I , L , r 

-I 0 I 2 3 
R 

Fig. 4. The solutions R,(R) and R2(R) of the saddle point equation (55) for K = 2 and' E = 3 
as a function of R. Near the stable fixed point A, the saddle point is symmetric: R~(R)= 
R2(R ), while for larger and smaller values of R the symmetry is broken, Rt(R):~ R2(R ). 
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0.0 i i i i i i i ~ I i i i 

-0.5 

r -1.0 

-1.5 

-2.0 ~ , , , I , , , , I ~ , , , I , , , , I , , , 

-1 0 1 2 3 
R 

Fig. 5. Numerical solution of the saddle point equation (55) for F(R) with K =  2 and E =  3. 
The function F(R) seems to be constant in the range where the symmetry between R~{R) and 
R2(R) is broken. 

terms are of the same order, the prefactor Q(R) in (54) would need to be 
calculated. In any case, one would find a nonzero integrated density of 
states (co(E))  which would be exponentially small when 2 ~ 0 and which 
would vanish to all orders in perturbation in 2. 

7. N U M E R I C A L  AI- I"EMPT TO D E T E R M I N E  THE MOBIL ITY  
EDGE 

Expression (49) obtained in Section 5 predicts that the mobility edge 
tends to the band edge value E = 2 x / ~  as ).--* 0. This disagrees with the 
result of Abou-Chacra and Thouless 16) that the mobility edge tends to 
E = K + 1 as 2 gets small. 

That the perturbative expansion might be insufficient to predict the 
location of the mobility edge has been discussed above: the perturbative 
expansion predicts that for E > Ec the density of states is zero to all orders 
in 2, whereas one knows that the density of states never vanishes for 
an unbounded distribution p(V) of potentials. We tried to show in the 
previous section that a way of resolving this difficulty is to have nonper- 
turbative contributions. The same could also happen for the reflection 
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Fig. 6. (a) Monte Carlo determination as described in Section 7 of the mobility edge for 
Cauchy distributed disorder. Here K = 4. The number N of different R is 100, 1000, or I0,000. 
(b) Same, for the Gaussian disorder. (c) Same, for independent R distributed according to the 
Cauchy distribution (20). 
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Cauchy uncorre loted 

-0 t i i t 
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FIGURE 6 (continued) 

amplitude: one could have Irl = 1 for E>E,.  to all orders in 2 but with 
Irl ~ 1 because of nonperturbative effects. 

One way of locating the mobility.edge is to determine whether the dis- 
tribution Prcaj(R) is stable against imaginary perturbations. We know that 
if the Ri are real at the boundary, they remain real under the iteration (2). 
Now let us add an infinitesimal imaginary component ie to the Ri at the 
boundary. After a finite number n of iterations of (2), the imaginary part 
of Ri is still infinitesimal and is proportional to e. Calling this imaginary 
part ie Yi, we have 

1 
Yi = ~ ~ - -  (61) 

paths j~ path R2 

where the sum in (61) runs over all the K" paths of n steps from site i to 
the boundary of the tree. If one computes the Y;, either they go to zero as 
n increases, meaning that Prca~(R) is stable, or they grow with n, meaning 
that Prr is unstable. 

7.1. Numerical Approach 

We did not find an analytical way of determining whether the Yi grow 
or decay under the iteration procedure. So we had recourse to a Monte 
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Fig. 7. Enlargements of Figs. 6a-6c showing small values of 2. Panel (b) shows a rather nice 
agreement with the result (49). However, as N increases, the agreement seems to become 
worse, indicating that the limits N--* oo and 2 ~ do not commute. This is even more apparent 
for the independently distributed R, where the exact result converges in the limit A.--* 0 to 
E =  K +  1 as predicted by Abou-Chacra and Thouless, ~~ whereas the finile-N curves converge 

the band edge 2 x ~ .  to 
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FXGURE 7 (continued) 

Carlo method. We represent the distribution Pream(R) by a sample of N 
points, where typically N =  100, 1000, or 10,000. This means that we have 
N values of the Ri and N values of the Yi. At each elementary step, we 
update one i chosen at random, by choosing K indices at random j ,  ..... Jtr 
between 1 and N and a random value of the potential Vi and we replace 
R; and Yg by 

Ri=E-2Vi-(-~J~ +-~' +R---~) (62, 

1 1 1 Yi=-~J, YJ'q--~-"J2 YJ2 . . . .  q- R} x Yj, (63) 

We start with the Yi of order I and we iterate this procedure until all the 
Y~ have become either very large, 103~ or very small, 10 -3~ The mobility 
edges estimated by this procedure are shown in Figs. 6 and 7 for the 
Gaussian and Catchy distributions. The points for different values of 2 are 
obtained for different samples, and so the roughness of the curves indicates 
the statistical errors. 

We expect this procedure to give the true mobility edge for N infinitely 
large since for large N the values of R j,, R j, ..... Rj~ are independent. We see 
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that as N increases the estimated mobility edge moves upward and to the 
right and so it is not so easy to predict from these data accurate values of 
the large-N limit. For a Gaussian potential and for small 2 the results 
shown in Fig. 7b seem to agree well with the expression (49). Notice, 
however, that the agreement becomes worse as N increases. This means 
that even though the mobility edge in the limit 2 ~ 0 starts at 2 x / ~  and 
not K +  1 in our simulations, we cannot conclude from the data that the 
mobility edge really starts at 2 x / ~  when 2 ~ 0, because the limits N ~ 
and 2 ~ 0 may not commute. 

7.2. The Case of  Independent  R 

In order to test the validity of this numerical approach, it is useful to 
try it in an exactly soluble case. I f  we suppose the R~ to be independent 
random variables distributed according to a given probability distribution 
Preat(R), one knows from the theory of direct polymers 132'331 on a tree the 
exact expression of the large-n limit of log Y~/n, where the Y~ are defined 
by (61). To test the Monte Carlo procedure described above, we computed 
the "mobility edge" by using (63) with independent R~ chosen according to 
their exact probability distribution (20). Then, using the known results 
from the problem of directed polymers, one has for large n 

( Yi) typ iea l  "~ [min(K(  R -2t'~ ) )l/p],, (64) 
p 

The line in the plane E, 2 which separates the region of very large Y; and 
very small Yi can then be obtained exactly using the following expression 
for (R- - 'P ) :  

( R  - 2 p )  = _ . dR  ( R - a ) ' - + b ' -  

b -2p [ b'- "~P F 2 f l t a n - I   osL (65) 

The exact curve for independent Ri is shown in Figs. 6c and 7c together 
with the results of the Monte Carlo procedure. We see that the results 
seem to converge rather slowly as N increases. Moreover, the limits N ~ 
and 2 ~ 0 do not seem to commute, as the exact result tends to K +  1 as 
predicted by Abou-Chacra and Thouless, 161 whereas the finite-N results 
tend to the band edge value 2 x/~.  

In summary we see that the Monte Carlo procedure described above 
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can in principle be used to determine the mobility edge. However, 
N =  10,000 does not seem to be large enough to resolve numerically the 
question of where the mobility edge starts in the 2 ---, 0 limit. 

8.  C O N C L U S I O N  

We have shown that a great deal of information on the Anderson 
model on a tree is contained in the random recursion (2). If we assume that 
under iteration of (2), the distribution of R converges to a fixed distribu- 
tion P(R), the problem of knowing whether the wavefunctions are extended 
or localized reduces to the question of the existence of a complex fixed 
distribution Pcomplcx(R). Equation (4) that P(R) satisfies is in fact equiv- 
alent to those already obtained by other methodsJ 5 91 We think, however, 
that our way of deriving these equations is more direct. 

The main result of this work was to show that one can expand 
quantities of interest like. the density of states, the mobility edge, or the 
reflection amplitude in powers of 2. This approach is not, however, entirely 
satisfactory because we have not fully understood the nonperturbative 
effects. In particular, the existence and nature of nonperturbative correc- 
tions to the complex fixed distribution Pcomplex(R) remain open questions, 
as, by consequence, does the position of the mobility edge in the limit 
2--, 0. Both our perturbative expansion and our Monte Carlo simulations 
indicate that the mobility edge starts at the band edge of the pure system, 
but nonperturbative effects could change the former prediction, and as is 
the case for the independent R of Section 7, the limit N--* ~ and the limit 
2--* 0 may not commute in the latter. 

We think several important points deserve further consideration. 
First, it would be nice to be able to prove mathematically that the 

sequence of P,,(R) converges and to know under what conditions a 
complex fixed distribution exists. This problem is not easy because, as we 
discussed above, in the pure case, the sequence does not converge for 
energies inside the band and somehow it is the effect of a weak disorder 
which makes the distribution concentrate around the complex fixed point. 

Second, it would be interesting to develop a nonperturbative 
approach, especially for the complex distribution, in order to compute at 
least for small 2 the shape of the mobility edge. Despite our efforts, we were 
unable to find a method allowin_ng us to describe Pcomplex(R) for small 2 in 
the range of energies [El > 2 x/K. 

One could also try to use the recursion (2) to calculate other quan- 
tities which play an important role in the localization problem, such as the 
inverse participation ratio. 

Last, we think that the Monte Carlo procedure described in Section 7 
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could be used to accurately determine the position of the mobility edge by 
increasing N to one or ten million, though this would require a rather 
serious numerical effort. 

A P P E N D I X  

In this appendix we derive the relation (5) between the real and 
complex fixed-point distributions and the expression (14) of the integrated 
density of states from the expression (13). To do so, let us assume that we 
have a sequence of complex distributions P~omp~ex(r-is) concentrated on 
the lower half-plane which satisfy the recursion (3). To each of these 
distributions we associate a real distribution Q"(R) by 

Q"(R)= _ dr dS (R_r)2+s2P~omplex(r-is) (A1) 

We are going to show that the sequence of Q"(R) thus defined also 
satisfies (3). 

From the recursion relation (3) for the complex distribution P~ompJox, 
we can rewrite (A1) as 

Qn+ I(R)= I dr d s ~ f  dr i ds i (R_r)2.~_s2fP(V)dV 
- - o c  i = l  - - o o  

( ,,) 
P:omp,e.(ri-isi) 6 r - E +  2V+ ~. ~ 6 s - i ~  , s, +r i 

X i=l 

(A2) 

It is useful now to note two properties of Cauchy distributed random 
variables. A Cauchy distribution is a probability distribution C(x; a, b) 
defined by 

1 b 
C(x; a, b) = rt (x _ a) 2 + b2 (A3) 

where a is real and b is real and positive. Let x t and x 2 be Cauchy 
distributed random variables with distribution~ C(xl;al ,  bt) and 
C(x2;a2, b2), respectively. Then the sum x=x~  +x2 is Cauchy with dis- 
tribution C(x; at +a2 ,  b, +b2). Similarly, if x is distributed according to 
C(x; a, b), the inverse y = 1/x is Cauchy with distribution C(y; a/(a2+ b2), 
b/(a2+ b2)). Hence, if the real variables Rt ..... Rk are Cauchy distributed 
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with distributions C(R~; r~, st), it follows for fixed V that  the real variable 
R defined by 

k 1 
R = E - 2 V -  ~ R--~,. (A4) 

i= l  

is distributed according to C(R; r, s), where r = E -  2 V -  y~.k=, r,/(r~ + s~) 
and s = Z~=,  s,/(s~ + r~). Written out as an equation, this reads 

~z (R - r) 2 + s 2 -- ~ dR, _,~ ,=,  n ( R , -  r~) 2 + s~ '~ .=, 

(A5) 
If we substitute (A5) into (A2) and use (A1), namely that  

fo~ f :  1 s i Q"(R) = dr, ds,-re (R - ri) 2 + s2 e~omolex(ri- is~) (A6) 
03 -- i 

it follows that  the Q,(R)  also obey (3). Assuming that  in the limit n--* oe 
the Q"(R) converge establishes (5). 

Let us now see how (14) can be obtained from (13). Expression (13) 
can be rewritten as 

1 Im Pr~at(R) dR <og(E) > = rt _ ~  

x P~r R ' - i e - - - - - ~ z  ~ 
- oe R 

K+,f  } 
+ - - ~  J- o~ Pr~,(R) dR l og (R  - ie) (A7) 

where - i e  is an infinitesimal imaginary part. One can then replace Prea,(R) 
in this expression by (5). Using the residue theorem to do the integral over 
the real variable R gives (14). 
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